A pipeline to analyse time-course gene expression data
true true

Abstract

The phenotypic diversity of cells is governed by a complex equilibrium between their genetic identity
and their environmental interactions: Understanding the dynamics of gene expression is a fundamental
question of biology. However, analysing time-course transcriptomic data raises unique challenging
statistical and computational questions, requiring the development of novel methods and software. Using
as case study time-course transcriptomics data from mice exposed to different strains of influenza, this
workflow provides a step-by-step tutorial of the methodology used to analyse time-course data: (1) quality
control and normalization of the dataset; (2) differential expression analysis using functional data analysis;
(3) clustering of time-course data; (4) interpreting clusters with GO term and KEGG pathway enrichment
analysis.

Introduction

Gene expression studies provide simultaneous quantification of the level of mRNA from all genes in a sample.
High-throughput studies of gene expression have a long history, starting with microarray technologies in the
1990s through to single-cell technologies. While many expression studies are designed to compare the gene
expression between distinct groups, there is also a long history of time-course expression studies. Such studies
compare the gene expression across time by measuring mRNA levels from samples collected at different
timepoints.! Such time-course studies can vary from measuring a few distinct time points, to sampling ten to
twenty time points. These longer time series are particularly interested in investigating development over
time. More recently, a new variety of time course studies have come from single-cell sequencing experiments
(Shalek et al. 2014; Habib et al. 2016; Trapnell et al. 2014) which can sequence single cells at different stages
of development; in this case, the time point is the stage of the cell in the process of development — a value
that is not know but estimated from the data as its “pseudo-time.”

While there are many methods that have been proposed for discrete aspects of time course data, the entire
workflow for analysis of such data remains difficult, particularly for long, developmental time series. Most
methods proposed for time course data are concerned with detecting genes that are changing over time
(differential expression analysis), examples being edge (Storey et al. 2005), functional component analysis
based models (Wu and Wu 2013), time-course permutation tests (Taesung Park et al. 2003), and multiple
testing strategies to combine single time point differential expression analysis (Wenguang and Zhi 2011).
However, with long time course datasets, particularly in developmental systems, a massive number of genes
will show some change. For example, in a study of mice lung tissues infected with influenza that we consider
in this workflow, over 50% of genes are shown to be changing over time. The task in these settings is often
not to detect changes in genes, but to categorize them into biologically interpretable patterns.

We present here a workflow for such an analysis that consists of 4 main parts (Figure 1):

e Quality control and normalization;

o Identification of genes that are differentially expressed;
e Clustering of genes into distinct temporal patterns;

o Biological interpretation of the clusters.

IBecause the collection of the mRNA is often destructive, samples at different time points are generally from different
biological samples; longitudinal studies, for example tracking the same subject over time, are certainly possible, but not directly
considered here.

This workflow represents an integration of both novel implementations of previously established methods and
new methodologies for the settings of developmental time series. It relies on several standard packages for
analysing gene expression data, some specific for time-course data, others broadly used by the community.
We provide the various steps of the workflow as functions in a R package called moanin.

. . .t
uality control *
Q v& A

normalization T %%,
*. - . g * .-
0®* "% sereg
s ® .‘ ‘ :.

Differential
expression
analysis

Gene expression

L]
*s
L]
- L]
Time course ot
data .
clustering -ﬂi:.__,!ﬁ-_
oo ** :‘ ¢ °
™ [] ' B . .'l-
L]
vt
a®
&iﬁzﬁ' \;"}'::IEE cytakine
1 fluEln I| b arsed
- - ’““"‘" ignalingi=aiing
Biological fitl';::‘u“:v";,agth,,.?%ﬁ‘ "
interpretation cytokin, cob oL
infection

Figure 1: Workflow for analyzing time-course datasets.

Installation and setup

moanin and timecoursedata are available from bioconductor, and can be installed using the install function
in the package BiocManager, along with the corresponding package that contains time course datasets we
will use:

library(BiocManager)
Need to use the development version for now.

BiocManager: :install(version="devel")
BiocManager: :valid()

BiocManager: :install("timecoursedata')
BiocManager: :install("moanin"

The following additional packages are needed for this workflow:

From Github
library(moanin)
library(timecoursedata)

From CRAN
library (NMF)
library(ggfortify)

From Bioconductor

library (topGO)

library(biomaRt)

library (KEGGprofile)

library(BiocWorkflowTools) #Needed for compiling the .Rmd script

If Bioconductor is installed, the CRAN and Bioconductor packages above can be installed via

BiocManager: :install(
c("NMF", "ggfortify", "topGO", "biomaRt",
"KEGGprofile", "BiocWorkflowTools", "timecoursedata",))

Analysis of the dynamical response of mouse lung tissue to influenza

This workflow is illustrated using data from a micro-array time-course experiment, exposing mice to three
different strains of influenza, and collecting lung tissue during 14 time-points after infection (0, 3, 6, 9, 12, 18,
24, 30, 36, 48, 60 hours, then 3, 5, and 7 days later) (Shoemaker 2015). The three strains of influenza used
in the study are (1) a low pathogenicity seasonal HIN1 influenza virus (A /Kawasaki/UTK4/2009 [HIN1]),
a mildly pathogenic virus from the 2009 pandemic season (A/California/04/2009 [HIN1]), and a highly
pathogenic H5N1 avian influenza virus (A/Vietnam/1203/2004 [H5N1]. Mice were injected with 10> PFU of
each virus. An additional 42 mice were injected with a lower dose of the Vietnam avian influenza virus (103
PFU).

By combining gene expression time-course data with virus growth data, the authors show that the inflammatory
response of lung tissue is gated until a threshold of the virus concentration is exceeded in the lung. Once this
threshold is exceeded, a strong inflammatory and cytokine production occurs. This results provides evidence
that the pathology response is non-linearly regulated by virus concentration.

While we showcase this pipeline on micro-array data, (Varoquaux et al. 2019) leverages a similar set of steps
to analyse RNA-seq data of the lifetime transcriptomic response of the crop S. bicolor to drought.

Overview of the data

First let’s load the data. The package moanin contains the normalized data and metadata of (Shoemaker
2015).

Now load in the metadata

data(shoemaker2015)

meta = shoemaker2015%meta

data = shoemaker2015%data

The meta data contains information about the treatment group, the replicate, and the timepoint for each
observation:

Group Replicate Timepoint
GSM1557140 0 K 1 0
GSM1557141 1 K 2 0
GSM1557142 2 K 3 0
GSM1557143 3 K 1 12
GSM1557144 4 K 2 12
GSM1557145 5 K 3 12

Before we dive into the exploratory analysis and quality control, let us define color schemes for our data that
we will use across the whole analysis. We define color schemes for groups and time points as named vectors.
We also define a series of markers (or plotting symbols) to distinguish replicate samples in scatter plots. We
also reorder the factor Group which describes the treatments so that the treatments are ordered from low to
high pathogeny (with Control being first).

group_colors = c(
uMn=Hdodgerblue4”,

”K"="g01d",
”C”=”orange”,
"VH”="red4",
HVLH=ured2u)

time_colors = grDevices::rainbow(15) [1:14]
names (time_colors) = c(0, 3, 6, 9, 12, 18, 24, 30, 36, 48, 60, 72, 120, 168)

Combine all color schemes into one named lists.
ann_colors = list(

Timepoint=time_colors,

Group=group_colors

)

replicate_markers = c(15, 17, 19)

names (replicate_markers) = c(1, 2, 3)

ann_markers = list(
Replicate=replicate_markers)

Reorder the conditions such that:

- Control is before any influenza treatment

- Each treatment ts ordered from low to high pathogeny
meta$Group = factor(meta$Group, levels(meta$Group) [c(3, 2, 1, 5, 4)]1)

Quality control and normalization

The first steps of analysis of gene expression data is always to do normalization and quality control checks of
the data. However, in what follows, we do not show the steps for normalization, as these are specific to the
platform (microarray); the code for the normalization can be found in as a supplemental file (Abrams et al.
2019; T. Park et al. 2003).

Instead, we focus on common steps for exploratory analysis of the data, including for the purpose of quality
control. These steps are not specific to time course data, but could be applied for any gene expression analysis.
For this reason, we will not print the detailed code that is needed for this part of the analysis; interested
readers can examine the rmarkdown code that accompanies this workflow.

Exploratory analysis and quality control

Typically, two quality control and exploratory analysis steps are performed before and after normalization:
(1) low dimensionality embedding of the samples; (2) correlation plots between each samples. In both cases,
we expect a strong biological signal, while replicate samples should be strongly clustered or correlated with
one another.

Before performing any additional exploratory analysis, let us only keep highly variable genes: for this step, we
keep only the top 50% most variable genes. In Figure 2, we plot the distribution of variance across all genes.

variance_cutoff = 0.5

Filter gemes by median absolute deviation (mad)
variance_per_genes = apply(data, 1, mad)

min_variance = quantile(variance_per_genes, c(variance_cutoff))
variance_filtered_data = datalvariance_per_genes > min_variance,]

probes
4000

0

Variance

Figure 2: Distribution of variance

Let us first perform the PCA analysis. Here, we perform a PCA of rank 3 of the centered and scaled gene
expression data.

In Figure 3, we visualize the data by plotting the PC components, with samples colored by either its condition
(top row) or its sampling time (bottom row) and each replicate a different symbol. We can see a large
difference in later time points.

Colored by Group

8 R . .
- e, L T [& .I‘ 5.‘
A
o | e - M i ..\.5‘ A
© s o K ?A =,
N ° A, [= 1 a ©a A
4 o |uie - ° | VH i .ﬁ -
» - u | VL .&y
A® Y L] -:. ° A‘l 3 e
=3 LI =2
i ° i
T .‘ an ° .' » “he oF AA.
' 4 [° Ag
T T [T T T T
-50 0 50 100 200 -50 0 50 100
PC1 PC3

Colored by Timepoint

o L] A A =
S ° A A m o N o A4
£¥ I P
(A o . e =,
2 © A" o e oo 4 s ?A ..
~ A ° A, o 12 Aq LN A
8 A‘ ° ° @ 18 ° ‘f n
o = r —
A =B n @ 24 A ° L
@ et -:Io @ 30 h:" ‘A. 20 P
3 -%X A o 36 e oA
T ALK o " » | 48 *Le o2 a.
¥ RN m 60 o . ag
| N B B B — | 72 T T T T
| 120
50 0 50 100 200 = 168 50 0 50 100
PC1 PC3

Figure 3: Plot of PC components: PC2 vs PC1 (right) and PC2 vs PC3 (left). Samples are colored by
condition (top row) and sampling time (bottom row).

We also plot in Figure 4 the pearson correlation between each sample as a heatmap diagram (using the
function aheatmap in NMF). We order the samples by their Group (treatment) and Timepoint (the time of
sampling).

Correlation plot

Timepoint
mo
w3
6
9
12
w18
w24
m30
W36
m48

Figure 4: Heatmap of the correlation between samples

We can already see interesting patterns emerging from the correlation plot. First, the cross-correlation
amongst samples taken from the control mice is higher than the cross correlation amongst the rest of the
treatments. Second, the influenza-infected mice mildly react until time point 36. Third, the less pathogenic

the strain is, the closer the samples are to the control condition. Fourth, the Vietnam samples at time point
120 and 168 are the one that are the most different from control samples.

Differential expression analysis of time-course data
Approaches to DE analysis in time-course data

The next step in a gene expression analysis is typically to run a differential expression analysis, generally to
find genes different between different conditions. For time-course data, there are two different approaches for
determining differentially expressed genes,

1) Per-time point analysis, where we consider each time point a different condition and determine what
genes are changing between specific time points, or between conditions at a single time-point.

2) Global analysis, where we consider the expression pattern globally over time, and consider what genes
have either different patterns between conditions or a changing pattern (i.e. non-constant) over time. A
common approach first step is to fit a spline model to each gene (Storey et al. 2005), and then use that
spline model to test for different kinds of differential expression across time.

The per-time point analysis is using classical differential expression approaches, and is often the approach
advocated when dealing with small time-course datasets, where there are only a few time points (Ritchie
et al. 2015; Robinson, McCarthy, and Smyth 2010; Love, Huber, and Anders 2014). For long time-course
datasets, however, a separate test for each time-point results in creating many different tests, for example one
for every time point, the results of which are difficult to integrate. We find in practice that the global analysis
simplifies analysis and interpretation of longer time courses data, with per-time point analysis reserved for
particularly interesting comparisons of individual time-points.

Time course data can either be on a single condition (to identify genes changing over time) or on multiple
conditions (such as the influenza dataset we are considering), which will alter slightly the types of questions
we are interested in.

DE Analysis in moanin Our package moanin provides functionality for performing both of these types of
approaches, though our focus is on the global approach, specifically by fitting spline models to the genes.

In both situations, we first need to set up an object (a Moanin object) to hold the meta data, as well
as information for fitting the spline model (formula, number of degrees of freedom of the splines, ...).
The Moanin object will contain information used throughout this analysis, in particular the condition and
timepoints of each sample and the basis matrix for fitting splines models.

We start by creating the Moanin object using the create_moanin_model function. We need to provide two
things to the function: a data.frame with the metadata, and the number of degrees of freedom of the
splines to be used in the functional modeling. The metadata data.frame object should contain at least two
columns: one named Group, containing the treatment effect, and a second one named Timepoint containing
the timepoint information.

Group Replicate Timepoint
GSM1557140 0 K 1 0
GSM1557141 1 K 2 0
GSM1557142 2 K 3 0
GSM1557143 3 K 1 12
GSM1557144 4 K 2 12
GSM1557145 5 K 3 12

We create a Moanin object for our data:

moanin_model = create_moanin_model(data=data, meta=meta,
degrees_of _freedom=6)

The main operation of the create_moanin_model function, in addition to holding the necessary meta data
of the samples, is to create a basis matrix for the splines fit. This matrix gives the evaluation of all of the
spline basis functions for each sample (as such, replicate samples will have the same values). By default,
create_moanin_model will create the spline basis functions which will lead to a different spline fit for every
group (as defined by the Group variable in the meta data.frame). This is done by the following R formula
syntax:

formula = ~Group:ns(Timepoint, df=degrees_of_fredoom) + Group + O.
Alternatively, the user can provide a formula of their own, or simply provide the basis matrix themselves.

We can see this information when we print the object:

show(moanin_model)

Moanin object on 209 samples containing the following information:
Group variable given by 'Group' with the following levels:

M K C VL VH

42 42 42 42 41

Time variable given by 'Timepoint'

Basis matrix with 35 basis_matrix functions

Basis matrix was constructed with the following spline_formula
~Group + Group:splines::ns(Timepoint, df = 6) + O

##

Information about the data (a SummarizedExperiment object):

class: SummarizedExperiment

dim: 39544 209

metadata(0):

assays(1): "'

rownames(39544): NM_009912 NM_008725 ... NM_010201.1 AK078781
rowData names(0):

colnames(209): GSM1557140 GSM1557141 ... GSM1557347 GSM1557348
colData names(5): '' Group Replicate Timepoint WeeklyGroup

The Moanin class extends the SummarizedExperiment class of Bioconductor, so that the data as well as the
meta data and our spline information are all held in one object. This means that the object can be subsetted
just like the data matrix, and the corresponding meta data and basis function evaluations will be similarly
subsetted:

dim(moanin_model)

[1] 39544 209
moanin_model[1:10,1:3]

Moanin object on 3 samples containing the following information:
Group variable given by 'Group' with the following levels:

M K C VL VH

0 3 0 0 O

Time variable given by 'Timepoint'

Basis matrix with 35 basis_matrix functions

Basis matrix was constructed with the following spline_formula
~Group + Group:splines::ns(Timepoint, df = 6) + O

##

Information about the data (a SummarizedExperiment object):

class: SummarizedExperiment

dim: 10 3

metadata(0):

assays(1): "'

rownames(10): NM_009912 NM_008725 ... NM_013782 NM_028622
rowData names(0):

colnames(3): GSM1557140 GSM1557141 GSM1557142

colData names(5): '' Group Replicate Timepoint WeeklyGroup

Weekly differential expression analysis

moanin provides a simple interface to perform a timepoint by timepoint differential expression analysis.
Comparison between groups is traditionally done by defining the group comparisons (called contrasts
in linear models) as a linear combination of the coefficients of the model. Comparing groups within each
timepoint can create many contrasts, and thus moanin provides functionality to create these contrasts in
an automatic way, and then calls limma (Ritchie et al. 2015) on the set of contrasts provided. By default,
moanin expects RNA-Seq gene counts, and will estimate voom weights.

Here, we show an example where we create contrasts that will be be the difference between the control mouse
(“M”) and the mouse infected with the high dose of the influenza strain A/Vietnam/1203/04 (H5N1) (“VL”)
for each time point (but the function works with any form contrasts (Ritchie et al. 2015)).

First, create the contrasts for all timepoints between the two groups of interest:

Define contrasts
contrasts = create_timepoints_contrasts(moanin_model, "M", "VL")

This creates a character vector of contrasts to be tested, one for each timepoint, in the format required by
limma:

[1] "M.O-VL.O" "M.3-VL.3" "M.6-VL.6" "M.9-VL.9" "M.12-VL.12"
Then moanin will run the differential expression analysis on all of those timepoints jointly using the function
DE_timepoints.

weekly_de_analysis = DE_timepoints(moanin_model, contrasts,
use_voom_weights=FALSE)

The output is a table of results, where each row corresponds to a gene and the columns correspond to the
p-value (pval), log-fold change (1fc) and adjusted p-value (qval) of the sets of contrasts; the order of the
genes in the table is the same as the input data. Here we show the results for the first timepoint (i.e. first
three columns of the output) and the first ten genes:

M.0-VL.0__pval M.0-VL.0__qgval M.0-VL.0_stat

NM_ 009912 0.2728 0.4746 -1.101
NM_ 008725 0.8509 0.9243 0.1884
NM_ 007473 0.08804 0.2193 -1.718
ENSMUST00000094955 0.008188 0.0368 -2.682
NM_ 001042489 0.4192 0.6208 -0.8102
NM_ 008159 0.1232 0.2778 -1.551
NM_ 001013813 0.05653 0.1594 1.923
AKO039774 0.01504 0.05902 2.461
NM_ 013782 0.8754 0.9377 -0.1571
NM_ 028622 0.7668 0.8759 -0.2971

Additional timepoints are in the additional columns of the output.

We will repeat this, comparing each of the remaining three treatments to the control (“M”) (code not printed
here, as it is a replicate of the above, see accompanying Rmarkdown document).

In Figure 5, we show the distribution of genes found differentially expressed per week between control and
each of the influenza strains. Such an analysis can demonstrate some general trends, with clearly more genes
being differentially expressed at later time points, and the Vietnam high-dose showing perhaps an earlier
onset than the low-dose.

Kawasaki California
o o o 9
§ s B
o> @ S
w w
[a) [a)
G § k]
o s o
£ ¥ £ g
g D E 3
z |:| z
o = o []
OO’)(DG)NOQ# OOWNONO® OMOONOITOWVOONO
HAANOMNTONMNNO© HAAHNNMTONNO
e e
Timepoint Timepoint
Vietnam low-dose Vietnam high-dose
13 [%]
£ 8 5 g
& 3 > B
w w
) a -
ke k]
2 8 S 35
E 3 E O
2 1 2 70l
o o
OMOONONITOOVNONO® OMOONNITOWOONOW
AANOOTONNO© HAANMONTONNO
—— ——
Timepoint Timepoint

Figure 5: Number of genes found DE in each timepoint when comparing the influenza strains to control.

However, the distribution of the number of genes found differentially expressed by considering each time-point
independently highlights the challenges of such approach. We can see that some timepoints have many less
genes found significantly differentially expressed (e.g. timepoint 6H and 18H of the Kawasaki strain). While
there may be biological differences at those time points for some genes, it seems unlikely that the large
majority of genes differentially expressed at timepoint 3H stop being differentially expressed at 6H and then
jump back to being differentially expressed at 9H. A more likely explanation is that there are some technical
or biological artifacts about the samples for 6H that are creating higher variation and thus less ability to
detect significance.

Another difficulty with such an approach is making sense of the general temporal structure for any particular
gene, as different genes will have different combinations of timepoints DE. For the comparison of the Kawasaki
strain to the control, for example, there are 26534 genes found DE in some timepoints, and there are 1590
different combinations of timepoints for which they are DE. Some of these make sense, such as DE in
timepoints 48H-168H (509 genes), but many are very fragmentary. For example there are 330 genes which
are DE in timepoints 48,60,120,168H, but not in the 72H. Many of these genes are likely to have not made
the cutoff for significance in 72H, but don’t show real differences in the overall trend between 48H-168H. In
Figure 6 we show the plots of the first 10 such genes. We can see that some might show some meaningful
changes between 60 and 72H, but others clearly just have a single replicate that is different or increased
variability at 72H that results in a lack of significance in 72H.

10

NM_001166067 NAP061485.1 NM_029766

NM_172641 NM_030595 NM_008828
3
NM_183201 NM_028263 ENSMUSTO00000077662
| 1 | 17 |

AK161056

Figure 6: The expression values over time for 10 genes found significant DE in timepoints 48,60,120,168H,
but not in the 72H timepoint.

As a summary, classic differential expression methods are appropriate for unordered treatments, but fail to
make use of the temporal structure of the data.

Time-course differential expression analysis between two groups

To leverage this temporal structure, Storey et al (Storey et al. 2005) proposed to model each gene in
time-course micro-array with a splines function, and to use a log-ratio likelihood test to detect differentially
expressed genes.

moanin extends this idea by not only fitting a splines function for each gene, but also providing functionality
to compare time course data between different treatment conditions, using a similar mechanism of contrasts —
only now the contrasts are differences between the estimated mean functions. This is done with the function
DE_timecourse, which takes as similar input that of DE_timepoints, only now will fit spline functions for
each gene and test the entire mean function (and unlike DE_timepoints, therefore does not require the extra
step of expanding the contrasts into contrasts for individual timepoints).

Differential expression analysis
timecourse_contrasts = c("M-K", "M-C", "M-VL", "M-VH")

The function takes the data (data.frame or named matriz), the meta data

(data.frame containing a timepoint and group column, the first corresponding

to the time-course information, the latter corresponding to the

treatment).

DE_results = DE_timecourse(moanin_model, timecourse_contrasts,
use_voom_weights=FALSE)

The output from DE_timecourse is a matrix of (raw) p-values and Benjamini-Hochberg corrected g-values
for each comparison.

names (DE_results)

[1] "M-K_stat" "M-K_pval" "M-K_qval" "M-C_stat" "M-C_pval" "M-C_qval"
[7] "M-VL_stat" "M-VL_pval" "M-VL_qgval" "M-VH_stat" "M-VH_pval" "M-VH_qval"
For convenience we will separate these into two matrices.

pval_columns = colnames(DE_results) [
grepl("pval", colnames(DE_results))]
gval_columns = colnames(DE_results) [

11

grepl("qval", colnames(DE_results))]
pvalues = DE_results[, pval_columns]
qvalues = DE_results[, qval_columns]

The number of genes found differentially expressed ranges from around 12000 to 29000 depending on the

strain and dosage of influenza virus given to the mice (Figure ??). This corresponds to between 30% to 70%
of the genes found differentially expressed in this time-course experiment.

30000 —
5000
[
()]
120000 |
[a)
215000
[}
o)
10000
P4
5000 |
0 J

|
a

Kawasak
Californ

Vietnam LD

Vietname HD

Figure 7: Distribution of DE genes per condition based on global splines analysis

Log-fold Change for Time Course Data

The next step in a classical differential expression analysis is typically to assess the effect of the treatment by
calculating for each gene the log fold change in the gene expression between the treatment and control.

Computing the log fold change on a time-course experiment is not trivial: one can be interested in the average
log-fold change across time, or the cumulative log-fold change. Sometimes a gene can be over-expressed at
the beginning of the time-course data, and then under-expressed at the end of the experiment. As a result,
moanin provides a number of possible ways to compute the log fold change across the whole time-course.
This is done via the function estimate_log_fold_change which takes as arguments the data, the Moanin
object, the contrasts to evaluate, and the method to use to estimate the log-fold change.

Individual Timepoints The first method (“timely”) gives a simple interface to compute the log-fold change
for each individual timepoints.

log_fold_change_timepoints = estimate_log_fold_change(
moanin_model, timecourse_contrasts, method="timely")

M-K:0 M-K:3 M-K:6 M-K:9 M-K:12

NM__ 009912 -0.5662 -0.2455 -0.4097 -0.332 -0.05026
NM__008725 0.9947 -3.461 0.6561 -1.211 -0.1999
NM__ 007473 -0.5177 -0.3147 0.2328 -0.3446 0.04762
ENSMUSTO00000094955 -0.2202 0.2567 -0.03584 -0.04697 -0.07075
NM__ 001042489 -0.2476 -0.2044 -0.3428 -0.3931 -0.4822
NM__ 008159 -0.7466 -0.06789 -0.3072 -0.7067 -0.4967

This matrix can then be used to visualize the log-fold change for each contrast per timepoint.

Cumulative Effect Sometimes, a single value per gene for each contrast is more useful, and

12

estimate_log_fold_change used above provides several options for this as well. Here is a table of
the possible ways estimate_log_fold_change can compute log-fold change values (including timely
discussed above).

Name Formula

timely Ifc(t) Per time point

sum > le(t) Sum of log fold change.
abs sum) |lfc(t)] Always positive

max max|lfc(t)] Always positive

min ming |lfc(t)] Always positive

timecourse See details below Captures overall strength and direction

The method “timecourse” tries to capture the overall strength and direction of the response in the following
way: we leverage the timepoint by timepoint log-fold change lfc(t), and apply the following formula:

sign (; ;1&@)) x (; Z|lfc(t)>

t=1
Note, however, that when a gene is not consistently up- or down-regulated the estimation of the direction

will not accurately represent the changes observed.

We demonstrate several of these methods on our data.

log_fold_change_timecourse = estimate_log_fold_change(
moanin_model, timecourse_contrasts, method="timecourse")

log_fold_change_sum = estimate_log_fold_change (
moanin_model, timecourse_contrasts, method="sum"

log_fold_change_max = estimate_log_fold_change(
moanin_model, timecourse_contrasts, method="max"

log_fold_change_min = estimate_log_fold_change (
moanin_model, timecourse_contrasts, method="min"

The returning object is a matrix, where each row corresponds to a gene, each column to a contrasts, and each
entry to the log-fold change for this pair of contrast and gene.

M-K M-C M-VL M-VH
NM__009912 -0.4091 -0.7525 -1.025 -1.42
NM__ 008725 1.575 2.008 2.543 2.618
NM__ 007473 -0.4158 -0.3346 -0.2127 0.3643
ENSMUST00000094955 -0.1126 -0.3763 -0.1558 -0.3091
NM__ 001042489 -0.2341 -0.4104 0.3085 0.4301

In Figure 8 we plot the log-fold change summary of each of these methods against each other. We see that
each method captures different elements of the time-course data, for example, overall change versus the
largest change.

13

timecourse vs sum timecourse vs max

o .

sum
-20 0 20
|
6
|

-60
|

timecourse timecourse

max vs sum

-20 0 20

min
sum

-60
|

Figure 8: Comparison of the different methods of calculating log-fold change per gene

With a single measure of log-fold change and the p-value, we can now look at the traditional volcano plot. In
Figure 9, we show the example of a volcano plot for the comparison of the control to the Kawasaki strain,
using the “timecourse” method of calculating log fold change.

pvalue = DE_results[, "M-K_pval"]

names (pvalue) = row.names(DE_results)

1fc_timecourse = log_fold_change_timecourse[, "M-K"]

names (1fc_timecourse) = row.names(log_fold_change_timecourse)

plot(1lfc_timecourse, -loglO(pvalue), pch=20, main="Volcano plot",
xlim=c(-2.5, 2), xlab="Timecourse 1fc")

14

Volcano plot

o
<
—~
g
= o
<
T ®
o
3 o
—
o
k=)
I o
—
o

Timecourse Ifc

Figure 9: Volcano plot for the comparison of the Kawasaki strain to control, where fold-change is calculated
with the timecourse method

Visualizing Genes of Interest

The package moanin also provides a simple utility function (plot_splines_data) to visualize gene time-course
data from different conditions. In Figure 10, we plot the 10 genes with the smallest p-values.

top_DE_genes_pval = names(sort(pvalue) [1:10])

plot_splines_data(moanin_model,subset_data=top_DE_genes_pval,
colors=ann_colors$Group, smooth=TRUE,
mar=c(1.5,2.5,2,0.1))

15

NM_173743 NM_145153 AK050122
ﬁij.__:
s

NM_029803 NM_145211 NM_145227.1

i ‘2 . i é ;-; .
- - T T T T
NM_016850 NM_008331 AK010014
8 4
N N .
. 9 . EEL L
o P bl o 4
o o
0 50 100 150 0 50 100 150
NM_015783
g -
- | M
~ . O K
o { . =N
1 | VH
. | VL

6 8

Figure 10: Top 10 genes with the smallest p-values

For each gene, the individual data points are plotted against time and color coded by their condition. Further,
a fitted spline function for each group is plotted to aid in comparing global trends across conditions.

Figure 11, we visualize the genes with the largest absolute timecourse log-fold change.

top_DE_genes_lfc = names(
sort(abs(1fc_timecourse),
decreasing=TRUE) [1:10])
plot_splines_data(moanin_model, subset_data=top_DE_genes_lfc,
colors=ann_colors$Group, smooth=TRUE,
mar=c(1.5,2.5,2,0.1))

16

NM_021274 NM_031190 AKO088165

138281 NM_025731.1 NM_008599

15
1
o

10
I
.
EER0OO0ON
<<0XxZ

Figure 11: Top 10 genes with largest absolute timecourse log-fold change

In examining these visualizations, we can see that genes often follow similar patterns of expression, although
on a different scale for each gene. We can leverage this observation to cluster the genes into groups of similar
patterns of transcriptomic response.

Clustering of time-course data

The very large number of genes found differentially expressed impairs any interpretation one would attempt:
with 70% of the genome found differentially expressed, all pathways are affected by the treatment. Hence the
next step of the workflow to cluster gene expression according to their dynamical response to the treatment.

Filtering Before clustering the genes, we first reduce the set of genes of interest to genes that are (1) found
significantly differentially expressed; (2) a large-fold change between conditions. Reducing the set of genes on
which to perform the clustering allows to estimate the centroids of the clusters with more stability.

To do this, we first aggregate all p-values obtained during the time-course differential expression step in a
single p-value using Fisher’s method (Fisher 1925) (pvalues_fisher_method). Next we select all the genes
which have a Fisher-adjusted p-value below 0.05 and a log-fold change of at least two for at least one condition
and one time-point.

Then rank by fisher's p-value and take maxz the number of genes of interest
Filter out g-values for the pvalues table

fishers_pval = pvalues_fisher_method(pvalues)

gvalues = apply(pvalues, 2, p.adjust)

fishers_qval = p.adjust(fishers_pval)

genes_to_keep = row.names(

log_fold_change_max [

(rowSums (log_fold_change_max > 2) > 0) &

(fishers_qgval < 0.05), 1)
Keep the data corresponding to the genes of interest in another vartiable.
by subsetting the “moanin_model , which contains the data.
de_moanin_model = moanin_model [genes_to_keep,]

17

Clustering Based on Spline Fits

After filtering, we are left with 5388 genes. We can then apply a clustering routine. As observed by looking
at genes found differentially expressed, many genes share a similar gene expression pattern, but on different
scales.

We thus propose the following adaptation of k-means:

o Splines estimation: for each gene, fit the splines function with the basis of your choice (as contained
in the Moanin object).

e Rescaling splines: for each gene, rescale the estimated splines function such that the values are
bounded between 0 and 1 and thus comparable between genes.

« K-means: apply k-means on the rescaled fitted values of the splines to estimate the cluster centroids.

The rescaling of the splines is similar to the rescaling genes by their standard deviation, which is common for
gene expression studies without a time component.

These clustering steps are performed by the splines_kmeans function in moanin. For now, we will set the
number of clusters to be 8, though we will return to the question of picking the best number of clusters below.

First fit the kmeans clusters

kmeans_clusters = splines_kmeans(de_moanin_model, n_clusters=8,
random_seed=42,
n_init=20)

The splines_kmeans function returns a named list with:

o centroids: a matrix containing the cluster centroids. The matrix is of shape (n_centroid, n_samples).
e clusters: a vector of size n_genes, containing the cluster assignments given by the kmeans step of
each gene

We then use the plot_splines_data function, only now applied to the centroids, to visualize the centroids
of each cluster obtained with the splines k-means model (Figure 12).

plot_splines_data(de_moanin_model,
data=kmeans_clusters$centroids,
colors=ann_colors$Group,
smooth=TRUE)

18

C1 c2 C3

I

i

o

50 100 150

0.0 0.4 0.8
I I N N B |
0.0 0.4 0.8
[IR N I |
EE00ON
sgo0xg

Figure 12: K-means centroids

These centroids are on a 0-1 scale, because of our rescaling of the spline fits, and do not represent the actual
gene expression level. In Figure 13, we plot a few of the actual genes assigned to cluster 2 with the estimated
centroid overlaid:

cluster_of_interest = 2

cluster2Genes = names (
kmeans_clusters$clusters[kmeans_clusters$clusters==cluster_of_interest])

plot_splines_data(de_moanin_model,
centroid=kmeans_clusters$centroids[cluster_of_interest,],
colors=ann_colors$Group, smooth=TRUE,simpleY =FALSE,
subset_data=cluster2Genes[3:6],
mar=c(1.5,2.5,2,0.1))

19

NM_027869 NM_008394

BC003314 NM_010397

Figure 13: Genes from cluster 2

Assigning genes to clusters

As we can see, while these genes have some similarity with the pattern of the cluster centroids, these particular
genes are not the best examples of the cluster, in the sense of matching the centroid estimates. Because of
this variability in how well the genes fit a cluster, we would like to be able to score how well a gene fits a
cluster.

Furthermore, we arbitrarily chose a subset of genes based on our filter, and we would like to have a mechanism
to assign all genes to a cluster.

Thus, the next step in the clustering portion of the workflow is a scoring and label step. Each gene is given a
score that corresponds to a goodness-of-fit between each gene and each cluster, computed as follows:

1 . 2
S(ylvu'k) = S(](k) X Imin (blcgylj + aiG; — I’Lk(t])))

aic;bic; ;

where i, is the centroid of cluster k and y; the gene of interest. The scoring function thus returns a value
between 0 and 1, 0 being the best score possible and 1 the worst score possible (no correlation between the
gene and the cluster centroid).

The score then allows us to assign all genes to a cluster (i.e. a label) based on the cluster for which they have
the best score, regardless of whether the gene was used in the clustering procedure.

The scoring and labeling is done via the splines_kmeans_score_and_label function. This function calculates
the goodness of fit of the gene to the cluster centroid and gives a cluster label to the gene if they have a
sufficiently high score, as we explain above.

Then assign scores and labels to *all* the data, using a goodness-of-fit
scoring function.
scores_and_labels = splines_kmeans_score_and_label(

moanin_model, kmeans_clusters)

The scores_and_labels list contains three elements:

20

e scores: the matrix of shape n_cluster x n_genes, containing for each gene and each cluster, the
goodness of fit as described above.

e labels: the labels for all of the genes with a sufficiently good goodness-of-fit score.

e score_cutoff: the cutoff used on scores to determine whether to assign a label

Assigning cluster labels: We could just assign each gene to a cluster based on which cluster gave the
minimum score. By default, splines_kmeans_score_and_label does not do that, but rather requires a
sufficiently low enough goodness-of-fit score. The criteria for being “sufficiently low” is based on looking
at the distribution of the scores of all genes on all clusters (i.e. the entire scores matrix returned by
splines_kmeans_score_and_label). A gene is then assigned to a cluster only if their best score is above
the 50% percentile of that distribution, with the remaining genes getting NA as their assignment (this choice
can be changed by proportion_genes_to_label). Note that because the distribution of scores of genes
across all clusters is used, this is not equivalent to assigning 50% of genes to a cluster — it is possible that all
genes are assigned to a cluster.

labels = scores_and_labels$labels

Let's keep only the list of genes that have a label.
labels = unlist(labels[!is.na(labels)])

And also keep track of all the gemes in cluster 2.
genes_in_cluster2 = names(labels[labels==cluster_of_interest])

After running scores_and_labels on our data, we now have 19772 genes that are assigned to a cluster.

We can visualize the impact of this filtering process by considering the distribution of goodness-of-fit scores
for each cluster if we did not have the filtering cutoff of splines_kmeans_score_and_label, i.e. if we simply
assign every gene to a cluster based on which gives them their minimum score. We display for each cluster,
the scores of the genes assigned to that cluster (Figure 14), as compared to the cutoff value for what that score
must be under our filtering procedure. We can do this by rerunning splines_kmeans_score_and_label
and setting the filter percentage_genes_to_label=1 (and we can speed up the calculation by giving our
previously calculated score via the argument previous_scores)

Get the best score and best label for all of the genes
This time without filtering labels
We can give the previous calculated scores to ‘previous_scores to save time
unfiltered_scores = splines_kmeans_score_and_label(
moanin_model, kmeans_clusters,
proportion_genes_to_label=1,
previous_scores=scores_and_labels$scores)
best_score = rowMin(scores_and_labels$scores)
best_label = unfiltered_scores$labels

par (mfrow=c(3, 3))
n_clusters = dim(kmeans_clusters$centroids) [1]
for(cluster_id in 1:n_clusters){
hist(best_score[best_label==cluster_id],
breaks=(1:50/50), xlim=c(0, 1),
col="black", main=paste("C", cluster_id, sep=""),
xlab="score", ylab="Num. genes")
abline(v=scores_and_labels$score_cutoff, col="red", lwd=3, 1lty=2)

21

C1 Cc2 C3

0 g 0 8 ' o 8
g ° g 3 g g
§ © | 5 | 5 |
g 5 _ g o
£ 8 £ 8 £ 9]
=1 — = ~ =
z z z
o o o
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
score score score
c4 C5 C6

Num. genes
0 300 600
Ll
Num. genes
0 50 100
[
Num. genes
0 100 250
[

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

score score score

Cc7 cs8

0

Num. genes
300 600
Lirig
Num. genes
200
L1

0.0 0.4 0.8 0.0 0.4 0.8

score score

Figure 14: Distribution of goodness-of-fit scores for each cluster. The dashed red line indicates the scoring
threshold: all genes with a score above this threshold will not be labeled.

Note that for some of the genes, their scores in all clusters is 1. Such genes fit poorly to all clusters and the
assignment we did above to one cluster is done arbitrarily to the first matching cluster. This underlines the
importance of filtering genes that fit poorly to clusters.

We can also investigate the differences between the labels provided by the splines k-means model and our
scoring and labeling step, in terms of the number of genes assigned to each cluster (Figure 15).

labeling from splines k-means

o
o
o
-
o
° [|
1 2 3 4 5 6 7 8
labeling from scores_and_labels function
o
o
o
n
o
o
° [- mm B
1 2 3 4 5 6 7 8

Figure 15: Number of genes assigned to each cluster based on kmeans criteria of nearest centroid (top) versus
our goodness-of-fit filtering strategy (bottom)

22

Of the original 5388 genes used in the clustering, 4935 are still assigned to a cluster based on their goodness
of fit score. We can compare whether they are still assigned to the same clusters based on a confusion matrix
shown below (Figure 16). The kmeans cluster assignments are shown on the rows, and the goodness-of-fit
assignments in the columns, with the number in each cell indicating the number of genes in the intersection
of the two clusters.

Confusion matrix

1 2 3 4 5 6 7 8

Goodness-of-fit assignments

Figure 16: Confusion matrix between the two sets of labels

Of the four genes we plotted before, 4 of them remained assigned to cluster 2 after our scoring. We can again
look at a few genes in cluster 2, only now pick the best scoring genes (Figure 17)

order them by their score in cluster
ord = order(scores_and_labels$scores[genes_in_cluster?2,
cluster_of _interest])

cluster2Score = genes_in_cluster2[ord]

plot_splines_data(
moanin_model, subset_data=cluster2Scorel[1:4],
centroid=kmeans_clusters$centroids[cluster_of_interest,],
colors=ann_colors$Group, smooth=TRUE, simpleY=FALSE,
mar=c(1.5, 2.5, 2, 0.1))

23

NM_029005 NM_172648

NM_001033450 ENSMUST00000097462

11 12 13 14 15 16 17
I

0 50 100 150 0 50 100 150

EE00ON
sgoxz

Figure 17: Top scoring genes in Cluster 2

We see that, as expected, these genes are a much better match to the cluster centroids.

Looking at specific clusters in detail.

Now, let us look more in detail at some specific clusters. Cluster 6 seems particularly interesting: it captures
genes with strong differences between the different influenza treatments and the control, while the control
remains relatively flat.

We’ve already shown how we can plot a few example genes, however, it can be hard to make sense of individual
genes given the amount of noise, as well as being hard to draw conclusions based on a few genes.

Heatmaps are useful to investigate the range of expression patterns for specific genes. Here, we are going to
plot heatmaps of the normalized gene expression patterns and the rescaled gene expression patterns side by
side.

First, we select the genes of interest, namely those in cluster 6, based on our goodness-of-fit assignment.

cluster_to_plot = 6
genes_to_plot = names(labels[labels == cluster_to_plot])

Now we will create the heatmaps of these genes (1264 genes, Figure 18).
layout (matrix(c(1,2) ,nrow=1), widths=c(1.5, 2))

order the observations by Group, then time, then replicate
orderedMeta<-data.frame(colData(moanin_model))
ord = order(
orderedMeta$Group,
orderedMeta$Timepoint,
orderedMeta$Replicate)
orderedMeta$Timepoint = as.factor(orderedMeta$Timepoint)

orderedMeta = orderedMetalord,]

24

res = aheatmap(
as.matrix(assay(moanin_model [genes_to_plot,ord])),
Colv=NA,
color="Y1GnBu",
annCol=orderedMetal,c("Group", "Timepoint")],
annLegend=FALSE,
annColors=ann_colors,
main=paste("Cluster", cluster_to_plot, "(raw)"),
treeheight=0, legend=FALSE)

Now use the results of the previous call to aheatmap to reorder the genes.
aheatmap (

rescale_values(moanin_model [genes_to_plot,ord]) [res$rowInd,],

Colv=NA,

Rowv=NA,

annCol=orderedMetal, c("Group", "Timepoint")],

annLegend=TRUE,

annColors=ann_colors,

main=paste("Cluster", cluster_to_plot, "(rescaled)"),

treeheight=0)

Cluster 6 (raw) Cluster 6 (rescaled)
L I] 0
[R 1l

.
ks Group
3 M
K
0.8 mc
HVH
0.6 mVL

Timepoint
mo

w3

6

0.2 9
12

w18

Figure 18: Heatmap of genes in Cluster 6

Those two heatmaps demonstrate that the clustering method successfully clusters genes that are on different
scales, and yet share the same dynamical response to the treatments.

25

How to choose the number of clusters.

A common question that arises when performing clustering is how to choose the number of clusters. A choice
for the number of clusters K depends on the goal. In this particular case, the end goal is not the clustering,
but to facilitate interpretation of the differential expression analysis step. As a result, the number of clusters
should not exceed the number of gene sets the user wants to interpret. This allows to set a maximum number
of clusters. Let us assume here that this number is 20 clusters.

Once the maximum number of clusters is set, several strategies allow to identify the number of clusters:

o Elbow method. First introduced in 1953 by Thorndike (Thorndike 1953), the elbow method looks at
the total within cluster sum of squares as a function of the number of clusters (WCSS). When adding
clusters doesn’t decrease the WCSS by a sufficient amount, one can consider stopping. This method
thus provides visual aid to the user to choose the number of clusters, but often the “elbow” is hard to
see on real data, where the number of clusters is not clearly defined.

e Silhouette method. Similarly to the Elbow method, the Silhouette method refers to a method of
validation of consistency within clusters, and provides visual aid to choose the number of clusters.

o Stability methods Stability methods are more computationally intensive than any other method, as
they rely on assessing the stability of the clustering for every k to a small randomization of the data.
The user is then invited to choose the number of clusters based on a number of similarity measures.

First, let us run the clustering for all values of k of interest. We will, for each clustering, conserve (1) with
within cluster sum of squares; (2) the clustering assignment (or label) for each gene.

Below we run the clustering for k equal to 2 — 20. The splines_kmeans function returns the WCSS for each
cluster, which we sum to get the total WCSS.

all_possible_n_clusters = c(2:20)
all_clustering = list()
wss_values = list()

i=1

for(n_cluster in all_possible_n_clusters){
clustering_results = splines_kmeans(de_moanin_model,
n_clusters=n_cluster, random_seed=42,
n_init=10)
wss_values[i] = sum(clustering_results$WCSS_per_cluster)
all_clustering[[i]] = clustering_results$clusters
i=1i+1

Elbow method

The Elbow method to choose the number of clusters relies on visualization aid to choose the number of
clusters. The method relies on plotting the within cluster sum of squares (WCSS) as a function of the number
of clusters. At some point, the WCSS will start decreasing more slowly, giving an angle or “elbow” in the
graph. The number of clusters is chosen at this “Elbow point.”

We plot the WCSS for k£ = 2 — 20 here (Figure 19). We see that as expected the WCSS continues to drop,
but there is no clear drop in the decrease, except for very small values of k (3-4 clusters). However, 3-4 seems
a very small number of gene clusters to find, given the complexity

plot(all_possible_n_clusters, wss_values,
type="b", pch=19, frame=FALSE,
x1lab="Number of clusters K",
ylab="Total within-clusters sum of squares")

26

35000
| |
/

25000
|
°
/

[T T 1
5 10 15 20

Total within—clusters sum of squares
[]

15000
L

Number of clusters K

Figure 19: Plot of WCSS as a function of k

Average silhouette method

The silhouette value is a measure of how similar a data point is to its own cluster (cohesion) compared to
other clusters (separation), shown in Figure 20.

function to compute average stlhouette for k clusters
average_silhouette = function(labels, y) {
silhouette_results = silhouette(unlist(labels[1]),dist(y))
return(mean(silhouette_results[, 3]))

extract the average silhouette
average_silhouette_values = list()
i=1
for(i in 1:length(all_clustering)){
clustering_results = all_clustering[i]
average_silhouette_values[i] = average_silhouette(clustering_results,
assay(de_moanin_model))
i=1i+1

}

plot(all_possible_n_clusters, average_silhouette_values,
type="b", pch=19, frame=FALSE,
xlab="Number of clusters K",
ylab="Average Silhouettes")

27

)

o o

@ © \

» -e

o S \

o)) o °

g ~e

9] | Te-0

> 0...®

< o) N e
= e T 00 e
S .
[[T T 1

5 10 15 20

Number of clusters K

Figure 20: Plot of silhouette values as a function of k

Looking at the stability of the clustering

On real data, the number of clusters is not only unknown but also ambiguous: it will depend on the desired
clustering resolution of the user. Yet, in the case of biological data, stability and reproducibility of the results
is necessary to ensure that the biological interpretation of the results hold when the data or the model is
exposed to reasonable perturbations.

Methods that rely on the stability of the clustering results to choose k thus ensure that the biological
interpretation of the clusters hold with perturbations to the data. In addition, simulation where the data
is generated with a well defined k show that the clustering is more stable for the correct of number of the
clusters.

Most methods to find the number of clusters with stability measures only provide visual aids to guide the
user. The first element often visualized is the consensus matrix: the consensus matrix is an n x n matrix that
stores the proportion of clustering in which two items are clustered together. A perfect consensus matrix
ordered such as all elements that belong to the same cluster are adjacent to one another which show blocks
along the diagonal close to 1.

To perform such analysis, the first step is run the clustering several times on a resampled dataset—either using
bootstrap or subsampling.

Using the bootstrapping strategy, we sample with replacement a sample of the same size as our original
clustering (i.e. 5388 genes):

n_genes = dim(de_moanin_model) [1]
indices = sample(1l:dim(de_moanin_model) [1], n_genes, replace=TRUE)

bootstrapped_y = de_moanin_model [indices,]

Using the subsampling strategy, we take a unique subset of the genes, keeping 80% of the genes:

subsample_proportion = 0.8

indices = sample(l:dim(de_moanin_model) [1],
n_genes * subsample_proportion,
replace=FALSE)

subsampled_y = de_moanin_model [indices,]

We run the bootstrap method on all genes differentially expressed and with a log-fold-change higher than 2
(computed with the 1fc_max method), and do it B = 20 times for each of k = 2 — 20. We show the code

28

below, but because of the time the computations take, we have evaluate these values separately and provided
the results in separate files (one per k) for users to explore more quickly.

You may want to set the random seed of the experiment so that the results
don't wary if you rerun the experiment.

set.seed(random_seed)

n_genes = dim(de_moanin_model) [1] * subsample_proportion

indices = sample(l:dim(de_moanin_model) [1], n_genes, replace=TRUE)

kmeans_clusters = splines_kmeans(de_moanin_model[indices,],
n_clusters=n_clusters,
random_seed=42,
n_init=20)

Perform prediction on the whole set of data.
kmeans_clusters = splines_kmeans_predict(de_moanin_model, kmeans_clusters,
method="distance")

For now, we bring in the results for £k = 5 and k = 20.

stability_5 = read.table("results/stability_5.tsv", sep="\t")
stability_20 = read.table("results/stability_20.tsv", sep="\t")

Each column corresponds to a bootstrap sample, each row to a gene, and each entry to the label found for
that particular clustering. Thus, for each gene, we have an assignment to a cluster over the 25 resampling
runs. For example, for the first 10 bootstrap samples and k = 5:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

A A204140 5 5 5) 5 1 3 2 1 3
ABO008911 5 5 1 4 1 2 3 3 2 3
AB010313 3 3 1 4 1 2 4 3 2)
AB010342) 3 1 5 1 1 3 3 1 3
AB011473 2 1 2 1 3 3 2 5) 2
AB099518 2 1 2 1 3 3 2 5) 2

Now we will use the function consensus_matrix in the moanin package to calculate proportion of times
each pair of samples was clustered together across the 25 resampling runs, and plot the heatmap of those
consensus matrices for k = 5 and k = 20.

par (mfrow=c(1, 2))
consensus_matrix_stability_5 = consensus_matrix(stability_5,
scale=FALSE)
aheatmap(consensus_matrix_stability_5[1:1000, 1:1000], Rowv=FALSE,
Colv=FALSE,
treeheight=0, main="K=5")

consensus_matrix_stability_20 = consensus_matrix(stability_20,
scale=FALSE)
aheatmap(consensus_matrix_stability_20[1:1000, 1:1000], Rowv=FALSE,
Colv=FALSE,
treeheight=0, main="K=20")

29

Figure 21: Consensus matrix of proportion of times samples were in the same cluster over bootstrap samples
for k=5 and 20.

We can see (Figure 21) that the choice of K = 5 seems much more stable across resampling runs than that of
K =20.

The model explorer strategy

The model explorer algorithm (Ben-Hur, Elisseeff, and Guyon 2001) proposes to estimate the number of
clusters exploiting the observation that if the number of clusters is correct, the clustering results are stable to
bootstrap resampling, as described above. The distribution of similarities between bootstrapped results for
each k can thus be compared for different values of k and guide the user in the choice of number of clusters.

The model explorer strategy works as follows. For a single choice of k, first perform n bootstrap experiments
to estimate the cluster centroids, followed by a step of assigning a label to all data points. Then, choose
a similarity measure between two partitions or clusters S(Bj, Bz). Examples are the normalized mutual
information or Fowlkes-Mallows. Finally, compute the pairwise similarity measure between all bootstrapped
partitions (i.e. B choose 2 pairs). Repeat this procedure for different & and plot per k the cumulative density
of the obtained scores.

We have already run the bootstrap resampling for values &k = 2 — 20 and saved the results. We will read that
data in, and use it to calculate the pairwise similarity scores.

The function plot_model_explorer takes in input a list of the bootstrapped results for all labels.

plot_model_explorer(all_labels)

30

8
8 r
o Clusterings
3 4
N —o— k=2

—e— k=3
o k=4
& k=5

k=6

o k=7
S] |- k=8

—o— k=9
s | kilo
S k=11
o |
(T2
o - o

0.5 0.6 0.7 0.8 0.9 1.0

NMI
Figure 22: Plot of the cumulative density of similarity of clusterings of data for different k

From this plot (Figure 22), we can deduce that k = 5 is more stable than k = 3 and k = 4, but not as stable
as k = 2. The model explorer strategy, in addition to visualizing the diversity of the centroids, can thus help
assess an adequate number of clusters.

Now, replot the same model explorer, but only for the clustering experiments k =6, k=7, k=8, k=9, and
k = 10 so that we can see more clearly the stability measures in that range (Figure 23).

clusters = c("k=6", "k=7", "k=8", "k=9", "k=10")

selected_labels = all_labels[clusters]

plot_model_explorer(selected_labels)

31

o

8 w*?

o Clusterings

3 4

« —o— k=6

k=7

o k=8

Q& 1 |- k=9
—e— k=10

o

3 4

-

o

S 4

-

o _|

n

o - -

0.5 0.6 0.7 0.8 0.9

NMI

Figure 23: Plot of the cumulative density of similarity of clusterings of data for different k, restricted to
k=6-10

This analysis doesn’t necessarily pick a particular k, but can help decide between k within a desired range,
for example, or to avoid k that degrade the stability.

Consensus clustering as a way to find k

The consensus clustering (Monti et al. 2003) relies on a similar idea but instead of looking at the cumulative
density of similarity measures of bootstrapped clustering, the authors suggest plotting the cumulative density
of elements of the consensus matrix. We provide a function plot_cdf_consensus in moanin to do this

plot_cdf_consensus(all_labels)

32

1.0

Clusters
It il + C2

| [] . I c3
] ' . 1 c4
got?® c5

1 ! [Cé
Cc7

 C8
- C§
ci10

- cii
+ C12
—=— C13
—a— C14
—e— C15
Ci16
+ C17
—=— C18
—a— C19
— - C20
T T T T T T

0.0 0z 04 06 08 1.0

08
]
-
——
-
-

06

yrange

'll...-nao-ouoool

04

t

0.0

xrange

Figure 24: Plot of the Consensus Clustering

The stability of the clustering based on the consensus matrix can then be measured via a single number by
looking at the area under the curve: the more stable the clustering, the closer to 0 or 1 will be the entries of
consensus matrix. The consensus clustering strategy thus suggests at looking at either the AUC as a function
of the number of the clusters or the “improvement” in the AUC as a function of the number of clusters.

Here we calculate the AUC (Figure 25).

auc_scores = moanin:::get_auc_similarity_scores(all_labels)
plot(n_clusters, auc_scores, col="black", type="b", pch=16)

09
]
A

auc_scores
07
L

05

n_clusters

Figure 25: Plot of AUC vs number of clusters

33

While here we calculate the improvement in the AUC (Figure 26).

delta_auc = diff(auc_scores)/auc_scores[1: (length(auc_scores)-1)]
plot(3:20, delta_auc, col="black", type="b")

uw 1
R
e \
|
\
g4 |
° \
|
g w <
=
&
@
=]
2
pi
o
s \
(=}
(=}
c“"o.,ﬁo
=0
g ‘“_0"0"0—9—0_0__0_,0,“0,0
< T T T T
5 10 15 20
3:20

Figure 26: Plot of improvement in AUC vs number of clusters

The consensus clustering method suggest that the most stable is k = 2, which separates over-expressed genes
from under-expressed genes. While it is indeed a very stable clustering, it does not capture the range of gene

expression patterns present in the data. This shows the limitation of such methods on real data, where the
number of clusters is not clearly defined.

Downstream analysis of clusters.

Once good clusters are obtained, the next step is to leverage the clustering to ease interpretation. Classic
enrichment analysis can then be performed on the gene set defined by each cluster. Examples include KEGG
pathway enrichment analysis, GO term enrichment analysis, and motif enrichment analysis.

First, let us clean up the genes we work with and only select the genes we are going to use in the enrichment

analysis. One can either all genes assigned to the cluster, only the set of differentially expressed genes in each
cluster, or the subset of genes that fit well to a cluster (based on some criterion).

Finding enriched pathways using biomaRt and KEGGprofile

Let us first tackle the case of pathway enrichment analysis. We will leverage the packages biomaRt (Durinck
et al. 2005) and KEGGprofile (Zhao, Guo, and Shyr 2017) for this step. KEGGprofile is a package that
facilitates enrichment analysis on a set of genes labeled with the Ensembl annotation (Yates et al. 2019)
based on the set of biological pathways described in the KEGG database (Kanehisa et al. 2015).

We thus need to convert the gene names, which are given in the Refseq annotation, into the corresponding
Ensembl name. This is where biomaRt comes in handy: it enables easy conversion from one gene annotation
to another. Here, we will use the function getBM in biomaRt to convert the gene names from cluster 8.

Set up right ensembl database

ensembl = useMart("ensembl")

34

ensembl = useDataset("mmusculus_gene_ensembl", mart=ensembl)

Get gene names of genes in Cluster 8
cluster = 6

gene_names = names (labels)

genes = gene_names [labels == cluster]

Convert gene names

genes = getBM(attributes=c("ensembl_gene_id", "entrezgene_id"),
filters="refseq mrna", values=genes,
mart=ensembl) ["entrezgene_id"]

Then we use the function find_enriched_pathway in the KEGGprofile package to determine whether any
KEGG pathways are enriched in cluster 6, i.e. whether a higher percentage of genes from a single pathway
are found in cluster 6 than we would expect by simply proportional assignment of genes to clusters.

genes = as.vector(unlist(genes))
pathways = find_enriched_pathway (
-

genes, species="mmu",
download_latest=FALSE)$stastic

Pathway Percentage Adj. p-value
04740 Olfactory transduction 8 1.204e-17
04080 Neuroactive ligand-receptor interaction 9 1.104e-05

Finding enriched GO terms

The Gene Ontology (GO) database (Consortium 2018), also categorizes genes into meaningful biological
ontologies and can be used for enrichment analysis via the package topGO (Alexa and Rahnenfuhrer 2016).
We again use biomaRt to find the mapping between genes and the GO terms to which they match.

genes = getBM(attributes=c("go_id", "refseq_mrna"),
values=gene_names,
filters="refseq_mrna",
mart=ensembl)

The biomaRt query results in a matrix with two columns: gene names and GO term ID. The package topGO
(Alexa and Rahnenfuhrer 2016) expects the GO term to gene mapping to be a list where each item is a
mapping between a gene name and a GO term ID vector, for example:

$NM_199153
[1] "GD:0016020" "GO:0016021" "GO:0007186" "GO:0004930" "GO:0007165"
[6] "GD:0050896" "GO:0050909"

$NM_201361
[1] "GD:0016020" "GO:0016021" "GO:0003674" "GO:0008150" "GO:0005794"
[6] "GD:0005829" "GO:0005737" "GO:0005856" "GO:0005874" "GO:0005739"
[11] "GO:0005819" "GO:0000922" "GO:0072686"

moanin provides a simple function (create_go_term_mapping) to make this conversion:

Create gene to GO id mapping
gene_id_go_mapping = create_go_term_mapping(genes)

Once the gene ID to GO mapping list is created, moanin provides an interface to topGO to determine enriched
GO terms. In particular, it performs a p-value correction and only returns the significant GO-term enrichment

35

in an easy to use data.frame object. Here, we show an example of running a GO term enrichment on the
“Biological process” ontology (BP).

Create logical vector of whether in cluster 6
assignments = labels == cluster

go_terms_enriched = find_enriched_go_terms(
assignments,

gene_id_go_mapping, ontology="BP")

Table 9: Table continues below

GO ID Description Annotated Significant
2 GO:0019058 viral life cycle 135 135
3 G0:0048872 homeostasis of number of cells 174 173
4 G0O:0019693 ribose phosphate metabolic process 213 212
5 GO0:0043161 proteasome-mediated 202 200
ubiquitin-dependent ...
6 G0:0006163 purine nucleotide metabolic process 209 208
7 G0O:0006091 generation of precursor metabolites 223 221
and ...
8 GO0:0070925 organelle assembly 452 441
9 G0:0043603 cellular amide metabolic process 486 475
10 GO0:0044271 cellular nitrogen compound 2112 2023
biosynthetic . ..
11 G0:0006364 rRNA processing 113 113
12 GO:0070507 regulation of microtubule cytoskeleton 110 110
o...
13 GO0:0033554 cellular response to stress 952 920
14 G0:0022407 regulation of cell-cell adhesion 257 252
15 GO:0042113 B cell activation 148 147
16 G0O:0006996 organelle organization 1902 1845
Expected P-value Adj. p-value

2 127.1 0.00028 0.4093

3 163.8 0.00031 0.4093

4 200.6 0.00037 0.4093

5 190.2 0.00044 0.4093

6 196.8 0.00064 0.4093

7 210 0.00064 0.4093

8 425.6 0.00064 0.4093

9 457.6 0.00072 0.4093

10 1989 0.00104 0.4976

11 106.4 0.00107 0.4976

12 103.6 0.00128 0.5457

13 896.4 0.00155 0.5564

14 242 0.00161 0.5564

15 139.4 0.00171 0.5564

16 1791 0.00174 0.5564

36

GO:0019058
GO:0048872
GO:0019693
GO:0043161
GO:0006163
GO:0006091
GO:0070925
GO:0043603
GO:0044271
GO:0006364
GO:0070507
GO:0033554
GO:0022407
GO:0042113
GO:0006996

Conclusion

This workflow provides a tutorial for the analysis of lengthy time-course gene expression data in R using
the package moanin, which aids in implementing common timecourse analyses. We illustrate the workflow
through the analysis of mice lung tissue exposed to different influenza strains and measured over time. The
proposed workflow consists of three common analysis main steps generally performed after quality control
and normalization: (1) differential expression analysis; (2) clustering of time-course gene expression data;
(3) downstream analysis of clusters. We demonstrate how the use of the package moanin allows for easy
implementation of these procedures in the setting of time-course data.

Software and data availability

The source code for this workflow can be found at https://github.com/NelleV/2019timecourse-rnaseq-pipeline.
Archived source code at the time of publication can be found at https://osf.io/2a5tw/.

All packages used in the workflow are available on GitHub, CRAN, or Bioconductor.

Data used in this workflow are available from NCBI GEO, accession GSE63786. Normalized data can be
found in timecoursedata. Normalization information is provided as supplementary information.

Last but not least, we use sessionInfo() to display all packages used in this pipeline and their version
numbers.

sessionInfo()

R version 4.0.3 (2020-10-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.1 LTS

##

Matrix products: default

BLAS: /usr/local/1ib/R/1ib/1ibRblas.so
LAPACK: /usr/local/lib/R/1ib/libRlapack.so

##

locale:

[1] C

##

attached base packages:

[1] stats4 parallel splines stats graphics grDevices utils
[8] datasets methods base

##

other attached packages:

[1] RColorBrewer_1.1-2 BiocWorkflowTools_1.16.0
[3] ggfortify_0.4.11 timecoursedata_0.99.18
[5] moanin_0.99.17 SummarizedExperiment_1.20.0
[7] GenomicRanges_1.42.0 GenomeInfoDb_1.26.0

[9] MatrixGenerics_1.2.0 matrixStats_0.57.0

[11] topG0_2.42.0 SparseM_1.78

[13] GO.db_3.12.1 AnnotationDbi_1.52.0

[15] IRanges_2.24.0 S4Vectors_0.28.0

[17] graph_1.68.0 viridis_0.5.1

[19] viridisLite_0.3.0 KEGGprofile_1.32.0

[21] NMF_0.23.0 Biobase_2.50.0

[23] BiocGenerics_0.36.0 cluster_2.1.0

[25] rngtools_1.5 pkgmaker_0.32.2

[27] registry_0.5-1 gegplot2_3.3.2

[29] pander_0.6.3 biomaRt_2.46.0

37

https://github.com/NelleV/2019timecourse-rnaseq-pipeline
https://osf.io/2a5tw/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63786

[31] BiocStyle_2.18.0 knitr_1.30

[33] limma_3.46.0 devtools_2.3.2

[35] usethis_1.6.3 rmarkdown_2.5

##

loaded via a namespace (and not attached):

[1] colorspace_1.4-1 ellipsis_0.3.1 rprojroot_1.3-2
[4] XVector_0.30.0 fs_1.5.0 rstudioapi_0.11
[7] remotes_2.2.0 bit64_4.0.5 fansi_0.4.1

[10] ClusterR_1.2.2 KEGG.db_3.2.4 xml2_1.3.2

[13] codetools_0.2-16 doParallel_1.0.16 pkgload_1.1.0
[16] gridBase_0.4-7 dbplyr_2.0.0 png_0.1-7

[19] BiocManager_1.30.10 compiler_4.0.3 httr_1.4.2

[22] backports_1.2.0 Matrix_1.2-18 assertthat_0.2.1
[25] cli_2.1.0 htmltools_0.5.0 prettyunits_1.1.1
[28] tools_4.0.3 gmp_0.6-1 gtable_0.3.0

[31] glue_1.4.2 GenomeInfoDbData_1.2.4 reshape2_1.4.4
[34] dplyr_1.0.2 rappdirs_0.3.1 Rcpp_1.0.5

[37] vctrs_0.3.4 Biostrings_2.58.0 NMI_2.0

[40] iterators_1.0.13 xfun_0.19 stringr_1.4.0
[43] ps_1.4.0 testthat_3.0.0 lifecycle_0.2.0
[46] gtools_3.8.2 XML_3.99-0.5 edgeR_3.32.0

[49] MASS_7.3-53 zlibbioc_1.36.0 scales_1.1.1

[52] hms_0.5.3 yaml_2.2.1 curl_4.3

[55] memoise_1.1.0 gridExtra_2.3 TeachingDemos_2.12
[58] stringi_1.5.3 RSQLite_2.2.1 desc_1.2.0

[61] foreach_1.5.1 pkgbuild_1.1.0 rlang 0.4.8

[64] pkgconfig 2.0.3 bitops_1.0-6 evaluate_0.14
[67] lattice_0.20-41 purrr_0.3.4 bit_4.0.4

[70] processx_3.4.4 tidyselect_1.1.0 bookdown_0.21
(73] plyr_1.8.6 magrittr_1.5 R6_2.5.0

[76] generics_0.1.0 DelayedArray_0.16.0 DBI_1.1.0

[79] pillar_1.4.6 withr_2.3.0 KEGGREST_1.30.0
[82] RCurl_1.98-1.2 tibble_3.0.4 crayon_1.3.4

[85] BiocFileCache_1.14.0 progress_1.2.2 locfit_1.5-9.4
[88] grid_4.0.3 git2r_0.27.1 blob_1.2.1

[91] callr_3.5.1 digest_0.6.27 Xtable_1.8-4

[94] tidyr_1.1.2 openssl_1.4.3 munsell_0.5.0
[97] sessioninfo_1.1.1 askpass_1.1

Author contributions

NV and EP wrote the workflow.

Competing interests

The authors declare that they have no competing interests.

Grant information

This research was funded in part by a Department of Energy (DOE) grant (DE-SC0014081); by the Gordon
and Betty Moore Foundation (Grant GBMF3834) and the Alfred P. Sloan Foundation (Grant 2013-10-27) to
the University of California, Berkeley [N.V.]; by a ENS-CFM Data Science Chair [E.P.].

38

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Acknowledgments

The authors thank Karthik Ram and the Ropensci community for valuable feedback.

References

Abrams, Z. B., T. S. Johnson, K. Huang, P. R. O. Payne, and K. Coombes. 2019. “A protocol to evaluate
RNA sequencing normalization methods.” BMC Bioinformatics 20 (Suppl 24): 679.

Alexa, Adrian, and Jorg Rahnenfuhrer. 2016. TopGO: Enrichment Analysis for Gene Ontology.

Ben-Hur, Asa, André Elisseeff, and Isabelle Guyon. 2001. “A Stability Based Method for Discovering
Structure in Clustered Data.” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
6-17.

Consortium, The Gene Ontology. 2018. “The Gene Ontology Resource: 20 years and still GOing strong.”
Nucleic Acids Research 47 (D1): D330-D338. https://doi.org/10.1093/nar/gky1055.

Durinck, S., Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. Brazma, and W. Huber. 2005. “BioMart and
Bioconductor: a powerful link between biological databases and microarray data analysis.” Bioinformatics 21
(16): 3439-40.

Fisher, R.A. 1925. Statistical Methods for Research Workers. Edinburgh Oliver & Boyd.

Habib, N., Y. Li, M. Heidenreich, L. Swiech, I. Avraham-Davidi, J. J. Trombetta, C. Hession, F. Zhang,
and A. Regev. 2016. “Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons.”
Science 353 (6302): 925-28.

Kanehisa, Minoru, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and Mao Tanabe. 2015. “KEGG
as a reference resource for gene and protein annotation.” Nucleic Acids Research 44 (D1): D457-D462.
https://doi.org/10.1093 /nar/gkv1070.

Love, Michael 1., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and
Dispersion for Rna-Seq Data with Deseq2” Genome Biology 15 (12): 550. https://doi.org/10.1186/s13059-
014-0550-8.

Monti, Stefano, Pablo Tamayo, Jill Mesirov, and Todd Golub. 2003. “Consensus Clustering: A Resampling-
Based Method for Class Discovery and Visualization of Gene Expression Microarray Data.” Machine Learning
52 (1): 91-118. https://doi.org/10.1023/A:1023949509487.

Park, Taesung, Dong-Hyun Yoo, Jun-Tk Ahn, Seung Yeoun Lee, Seungmook Lee, Sung-Gon Yi, and Yong-
Sung Lee. 2003. “Statistical tests for identifying differentially expressed genes in time-course microarray
experiments.” Bioinformatics 19 (6): 694-703. https://doi.org/10.1093/bioinformatics/btg068.

Park, T., S. G. Yi, S. H. Kang, S. Lee, Y. S. Lee, and R. Simon. 2003. “Evaluation of normalization methods
for microarray data.” BMC Bioinformatics 4 (September): 33.

Ritchie, Matthiew E, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth.
2015. “limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.” Nucleic
Acids Research 43 (7): e47.

Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. “edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data.” Bioinformatics 26 (1): 139-40.

Shalek, A. K., R. Satija, J. Shuga, J. J. Trombetta, D. Gennert, D. Lu, P. Chen, et al. 2014. “Single-cell
RNA-seq reveals dynamic paracrine control of cellular variation.” Nature 510 (7505): 363—69.

39

https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1093/bioinformatics/btg068

Shoemaker, S. AND Eisfeld, J. E. AND Fukuyama. 2015. “An Ultrasensitive Mechanism Regulates Influenza
Virus-Induced Inflammation.” PLoS Pathogens 11 (6): 1-25.

Storey, J. D., W. Xiao, J. T. Leek, R. G. Tompkins, and R. W. Davis. 2005. “Significance analysis of time
course microarray experiments.” Proc. Natl. Acad. Sci. U.S.A. 102 (36): 12837-42.

Thorndike, Robert L. 1953. “Who Belongs in the Family?” Psychometrika 18 (4): 267-76. https://doi.org/
10.1007/BF02289263.

Trapnell, C.,; D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. Livak, T.
S. Mikkelsen, and J. L. Rinn. 2014. “The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells.” Nat. Biotechnol. 32 (4): 381-86.

Varoquaux, N., B. Cole, C. Gao, G. Pierroz, C. R. Baker, D. Patel, M. Madera, et al. 2019. “Transcriptomic
Analysis of Field-Droughted Sorghum from Seedling to Maturity Reveals Biotic and Metabolic Responses.’
Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1907500116.

)

Wenguang, Sun, and Wei Zhi. 2011. “Multiple Testing for Pattern Identification, with Applications to
Microarray Time-Course Experiments.” Journal of the American Statistical Association 106 (493): 73-88.
https://doi.org/10.1198 /jasa.2011.ap09587.

Wu, Shuang, and Hulin Wu. 2013. “More Powerful Significant Testing for Time Course Gene Expression
Data Using Functional Principal Component Analysis Approaches.” BMC' Bioinformatics 14 (1): 6. https:
//doi.org/10.1186/1471-2105-14-6.

Yates, Andrew D, Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta,
M Ridwan Amode, et al. 2019. “Ensembl 2020.” Nucleic Acids Research 48 (D1): D682-D688. https:
//doi.org/10.1093 /nar /gkz966.

Zhao, Shilin, Yan Guo, and Yu Shyr. 2017. KEGGprofile: An Annotation and Visualization Package for
Multi-Types and Multi-Groups Expression Data in Kegg Pathway.

40

https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://doi.org/10.1073/pnas.1907500116
https://doi.org/10.1198/jasa.2011.ap09587
https://doi.org/10.1186/1471-2105-14-6
https://doi.org/10.1186/1471-2105-14-6
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1093/nar/gkz966

	Introduction
	Installation and setup

	Analysis of the dynamical response of mouse lung tissue to influenza
	Overview of the data
	Quality control and normalization
	Exploratory analysis and quality control

	Differential expression analysis of time-course data
	Approaches to DE analysis in time-course data
	Weekly differential expression analysis
	Time-course differential expression analysis between two groups
	Log-fold Change for Time Course Data
	Visualizing Genes of Interest

	Clustering of time-course data
	Clustering Based on Spline Fits
	Assigning genes to clusters
	Looking at specific clusters in detail.
	How to choose the number of clusters.

	Downstream analysis of clusters.
	Finding enriched pathways using biomaRt and KEGGprofile
	Finding enriched GO terms

	Conclusion
	Software and data availability
	Author contributions
	Competing interests
	Grant information
	Acknowledgments
	References

