consensus_matrix.Rd
Compute consensus matrix from labels
consensus_matrix(labels, scale = TRUE)
labels | a matrix with each column corresponding to a the results of a single clustering routine. Each column should give the cluster assignment FIXME: What is the required format of entries?? |
---|---|
scale | boolean, optional, default: TRUE. Whether to rescale the resulting consensus matrix so that entries correspond to proportions. |
a symmetric matrix of size NxN, where N is the number of rows of the
input matrix labels
. Each i,j entry of the matrix corresponds the
number of times the two rows were in the same cluster across the clusterings
(scale=FALSE
) or the proportion of clustering that the two rows are
in the same cluster (scale=TRUE
).
data(exampleData) moanin <- create_moanin_model(data=testData,meta=testMeta) #small function to run splines_kmeans on subsample of 50 genes subsampleCluster<-function(){ ind<-sample(1:nrow(moanin),size=50,replace=FALSE) km<-splines_kmeans(moanin[ind,],n_clusters=3) assign<-splines_kmeans_predict(moanin,km, method="distance") } kmClusters=replicate(10,subsampleCluster()) cm<-consensus_matrix(kmClusters) heatmap(cm)