estimate_log_fold_change.Rd
Estimates log fold change
# S4 method for Moanin estimate_log_fold_change( object, contrasts, method = c("timecourse", "sum", "max", "timely", "abs_sum", "abs_squared_sum", "min") )
object | An object of class |
---|---|
contrasts | The contrasts to consider |
method | method for calculating the log-fold change. See details. |
A data.frame giving the estimated log-fold change for each gene
(row). For all methods except for "timely", the data frame will consist of
one column for each value of the argument contrasts
. For "timely"
there will be one column for each timepoint and contrast combination.
The following methods exist for calculating the log-fold change between conditions over time (default is "timecourse"):
timely
The log-fold change for each individual timepoint
(\(lfc(t)\))
timecourse
The average absolute per-week fold-change,
multiplied by the sign of the average per-week fold-change.
sum
Sum of per-week log fold change, over all timepoints
max
Max of per-week log fold change, over all timepoints
abs_sum
Sum of the absolute value of the per-week log fold
change, over all timepoints
abs_squared_sum
Sum of the square value of the per-week log
fold change, over all timepoint
min
Min of per-week log fold change, over all timepoints
If the user set log_transform=TRUE
in the creation of the
Moanin
object, the data will be log transformed before calculating
the fold-change.
data(exampleData) moanin <- create_moanin_model(data=testData,meta=testMeta) estsTimely <- estimate_log_fold_change(moanin, contrasts=c("K-C"), method="timely") head(estsTimely)#> K-C:0 K-C:3 K-C:6 K-C:9 K-C:12 #> NM_009912 0.006142387 -0.02249478 0.05159468 0.11439732 -0.06146186 #> NM_008725 -2.654785490 -0.27343865 0.68829245 -0.47188066 1.74633186 #> NM_007473 0.160362295 -0.10176553 -0.50795729 -0.05957733 -0.42501853 #> ENSMUST00000094955 -0.350591967 -0.64630114 -0.25647962 -0.35991022 -0.41771162 #> NM_001042489 -0.088974987 -0.23213806 0.18915007 -0.17861133 -0.33206436 #> NM_008159 0.386377015 -0.02983951 0.08627550 0.32663505 0.18930621 #> K-C:18 K-C:24 K-C:30 K-C:36 K-C:48 #> NM_009912 -0.02073242 -0.09083955 -0.3541720 -0.53331742 -1.277439619 #> NM_008725 0.08891687 -2.04306556 0.5988342 0.90478316 -1.985072414 #> NM_007473 -0.37838655 -0.10451264 -0.4244740 1.03998928 -0.210841392 #> ENSMUST00000094955 -0.43184782 -0.56349779 -0.4123224 -0.28054680 -0.005760532 #> NM_001042489 0.06765746 -0.10443410 -0.4429174 0.07642017 0.683764131 #> NM_008159 0.30017465 0.15285657 -0.5034323 -0.81198828 -1.029925872 #> K-C:60 K-C:72 K-C:120 K-C:168 #> NM_009912 -0.9508426 -1.3977873 -0.2928437 -0.86763035 #> NM_008725 2.4051843 -0.2778756 2.7361353 0.71780185 #> NM_007473 -0.9481227 -0.3388556 0.4967829 0.19739522 #> ENSMUST00000094955 0.1210526 0.3766247 0.2479095 0.50586716 #> NM_001042489 0.5895878 0.3821725 0.3287660 0.02832949 #> NM_008159 -1.1093377 -0.1279111 -0.3025480 -0.72920750estsTimecourse <- estimate_log_fold_change(moanin, contrasts=c("K-C"),method="timecourse") head(estsTimecourse)#> K-C #> NM_009912 -0.4315497 #> NM_008725 1.2565999 #> NM_007473 -0.3852887 #> ENSMUST00000094955 -0.3554588 #> NM_001042489 0.2660706 #> NM_008159 -0.4347011